

Distributed Computing using CloudLab

Linh B. Ngo Clemson University

Introduction

- Distributed and Cluster Computing (CPSC 3620)
- Offered twice per academic year
- Average class size: 40-45 students
- Required junior-level class (typically taken at senior year)
- Contents:
 - Infrastructure/System-oriented
 - Performance/Efficiency
 - High Performance Computing
 - MPI
 - Big Data Computing
 - Hadoop MapReduce
 - Apache Spark
 - HPCCSystems

Computing Resources

- Palmetto Supercomputer
 - 2000+ nodes, open to all faculty/students
 - No administrative access
 - Cannot share nodes among students to support group assignment
 - Preemption from node owners
- CloudLab
 - Limited resources for large-scale study
 - Administrative access
 - Ease of collaboration
 - No preemption

Computing Resources

- Combine both local computing resources and CloudLab
- Learning outcomes through CloudLab
 - Administrative skills for distributed systems
 - In-depth understanding of distributed systems
- Learning outcomes through Palmetto
 - Basic understanding of parallel application development
 - Impacts of scaling and efficiency on larger systems

Tutorial

Set up environments for distributed computing on CloudLab

- MPI
 - Two-node cluster
 - OpenMPI
- Hadoop
 - Three-node cluster
 - Hortonwork Distribution

 Both nodes should have the same configuration, no network connection is needed (due to public IP)

- You can save multiple versions of your topology
- Instantiate the version that you want to launch
- The launching procedure will be similar to the OpenStack tutorial

On each node:

```
sudo apt-get update
sudo apt-get install libibnetdisc-dev
sudo nano /etc/environment
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin:/usr/games:/usr/local/games:/home/mpi
user/.openmpi/bin"
LD LIBRARY PATH="/lib:/usr/lib:/usr/local/lib:/home/
mpiuser/.openmpi/lib/"
```

sudo adduser mpiuser


```
sudo adduser mpiuser
ssh mpiuser@localhost
wget <a href="https://www.open-">https://www.open-</a>
mpi.org/software/ompi/v1.8/downloads/openmpi-
<u>1.8.1.tar.qz</u>
tar xzf openmpi-1.8.1.tar.gz
cd openmpi-1.8.1
./configure --prefix="/home/mpiuser/.openmpi"
make
make install
```



```
ssh-keygen -t rsa
cd .ssh
cp id rsa.pub authorized keys
ssh-copy-id -i id rsa.pub <hostname of the other node>
nano nodelist
<hostname of first node>
<hostname of second node>
```


Example program

```
#include <stdio.h>
#include <unistd.h>
#include <sys/utsname.h>
#include <mpi.h>
int main(int argc, char *argv[]){
  int rank, size;
 MPI Status status;
 MPI Init(&argc, &argv);
 MPI Comm size (MPI COMM WORLD, &size);
 MPI Comm rank (MPI COMM WORLD, &rank);
  struct utsname uts;
 uname (&uts);
 printf("%d at %s\n", rank, uts.nodename);
 MPI Finalize();
 return 0;
```



```
mpicc gethostname.c -o gethostname
```

```
scp gethostname mpiuser@<the other node>:/home/mpiuser
scp nodelist mpiuser@<the other node>:/home/mpiuser
```

```
mpirun -np 2 -machinefile nodelist ./gethostname
```

```
mpirun -np 2 -machinefile nodelist --map-by node
./gethostname
```


Assignment Ideas

- Develop a work queue using various allocation strategies:
 - Normal
 - Cyclic
 - Dynamic
- Setup MPI cluster with nodes on separate sites, reduce network connection, and evaluate performance on different allocation strategies

Hadoop on CloudLab

- Enterprise Hadoop
- Hortonworks
- http://hortonworks.com/hdp/downloads/

Hadoop on CloudLab

 Both nodes should have the same configuration on bare metal PC, no network connection is needed (due to public IP)

On each node

- SSH onto the node from Palmetto
- Change to root:

```
sudo su -
```

Execute the following commands:

```
chkconfig --list ntpd
chkconfig ntpd on
service ntpd start
chkconfig iptables off
/etc/init.d/iptables stop
setenforce 0
```


On each node

Setup Ambari download server

```
wget -nv http://public-repo-
1.hortonworks.com/ambari/centos6/2.x/updates/2.1.2/ambari.repo -0
/etc/yum.repos.d/ambari.repo
```

On namenode

```
yum -y install ambari-server
yum -y install ambari-agent
```

On datanode

```
yum -y install ambari-agent
```


On namenode

Set up ambari server:

```
ambari-server setup
```

- Select default for all questions
- Select 1 for JDK version
- When all done, start ambari server

```
ambari-server start
```


On each node

- Using vim to edit /etc/ambari-agent/conf/ambari-agent.ini
- Change:

hostname=<hostname of namenode as shown in list view of CloudLab>

Start Ambari Agent

ambari-agent start

Assuming you had ambari agents up and running ...

- HDFS
- YARN+MapReduce2
- Tez
- ZooKeeper
- Ambari Metrics

Edit configuration as you see fit

Deploy ...

Warning due to lack of space and failed checks (ignore)

HDFS

YARN

Tutorial

```
sudo su hdfs
hdfs dfs -mkdir /user/<username>
hdfs dfs -chown <username>:<username> /user/<username>
exit to <username>
hdfs dfs -ls /user/
git clone <a href="https://github.com/clemsoncoe/Introduction-to-">https://github.com/clemsoncoe/Introduction-to-</a>
Hadoop-data.qit
cd Introduction-to-Hadoop-data
hdfs dfs -put gutenberg-shakespeare.txt /user/<username>/
yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-
mapreduce-examples-2.7.1.2.3.6.0-3796.jar wordcount
qutenberg-Shakespeare.txt output/
hdfs dfs -ls output
hdfs dfs -cat output/part-r-00000
```


Assignment Ideas

- Deploy a Hadoop cluster and upload a large data set (Airline ontime performance data: http://stat-computing.org/dataexpo/2009/the-data.html)
- Examine and investigate performance of Hadoop MapReduce as data nodes are killed/added to the cluster
- Examine performance of Hadoop MapReduce as data nodes are located on different sites