
pASSWORD tYPOS and
How	to	Correct	Them	Securely

Rahul	Chatterjee,	Anish	Athayle,	Devdatta Akhawe,	Ari	Juels,	Thomas	Ristenpart
rahul@cs.cornell.edu

http://silver.web.unc.edu Cloud	Security	Horizons	Summit,	March	2016

Introduction Typo Correction

Security

Typo Rates

Typos	are	annoying.
Websites	reject	a	login	attempt	even	if	a	
legitimate	user	makes	small	typographical	
mistakes	when	typing	password.		This	hampers	
user	experience and	discourages	users	from	
choosing	long	passwords.

We	analyze	the	usability	benefits and	security	
loss of	tolerating	small	typographical	errors	in	
submitted	passwords.		

Correctors:	A	set	of	simple	transformation	
functions	that	corrects	easily	correctable	typos.	
e.g.,	swc-all,	switches	the	case	of	all	the		
letters	in	a	password.

Correcting	typos	on	the	fly:
Allow	login	if	either	the	entered	password	or	
any	of	the	corrected	versions	of	it	matches	the	
stored	password.		
Compatible	with	existing	password	stores,	and:
1. Offline	attack	remains	unchanged.
2. Online	attack	can	be	throttled	by	the	

website	if	the	website	sees	a	lot	of	failed	
login	attempts.	

• Our free	corrections	theorem proves	that	
one	can	correct	typos	without	any	security	
loss,	in	theory

• We	provide	practical	typo	tolerant	password	
checkers based	on	the	theory

Collected	typo	data	using	studies	conducted	at:
• Amazon	Mechanical	Turk,	and
• Dropbox	login	infrastructure

Dropbox results:
• 9% of	all	the	logins	fail	due	to	3	typos,	such	

as	accidental	pressing	caps-lock	key.
• fixing	these	simple	typos	can	increase	total	

login	by	3% in	Dropbox.
• delay	in	login	can	be	saved	by	100	seconds	

for	20% of	the	users.	

1 2,000 4,000 6,000 8,000 10,000

0

0.2

0.4

0.6

0.8

Number of guesses allowed per account

�

gr
ee

dy
q

�
�

q
(⇥

1
0

�
2

)

Chk-All
Chk-wBL
Chk-AOp

Fig. 7: Difference in exact-knowledge adversary success
against typo-tolerant schemes and exact checking, as a func-
tion of q for challenge distribution phpBB and Ctop2.

more passwords or setting q larger, respectively.
As noted in the previous section, the greedy algorithm is

known to provide a good approximation for the weighted max
coverage problem. Given that the password probabilities range
over a very dense space, and our correction sets are quite small,
we expect �

greedy
q ⇡ �

fuzzy. We do not have any theoretical
proof for this claim, and leave analysis as an important
question for future work. We can of course always bound the
actual value of �q via �q 1.582�

greedy
q +0.582�q . So, for

example with the RockYou challenge distribution, q = 10, and
the Ctop5 corrector set we have that �q 0.0153 as compared
to �

greedy
q ��q = 0.0063. We expect this three-fold decrease in

relative security to be quite pessimistic: the better the greedy
algorithm approximates the problem the worse the adjustment
to compute �q becomes.

B. Estimating attackers

We have so far considered attackers that have exact knowl-
edge of the password distribution (even when the system
designer may not). In practice such attackers do not exist,
and instead adversaries must try to estimate the distribution
of passwords. We refer to these as estimating attackers.
As before, we assume adversaries know the exact checking
algorithm in use.

We started by considering an adversary that estimates
the password distribution using the Weir et al. probabilistic
context-free grammar (PCFG) [43], a trained model of pass-
word distributions used to build effective crackers. However,
our experiments with this showed that it provides poor efficacy
in online guessing attacks, doing significantly worse than the
approaches we describe below and, importantly, it did equally
poorly against the typo-tolerant checkers in all settings.

We therefore turn to a different adversarial strategy for
estimating the password distribution. We measure the success
rate of an attacker that uses one of the password leaks as its
estimate of the distribution. This is a typical strategy in prac-
tice. We test these attacks against the other two distributions
and for each of the exact checking, Chk-All, Chk-wBL, and
Chk-AOp. The latter three use Ctop2. The security loss for all
combinations are tabulated in Figure 8. (Note that the left-to-

Attacker Challenge distribution
distribution RockYou phpBB Myspace

ExChk
RockYou 11.23 3.21 9.34
phpBB 8.10 12.71 1.81
Myspace 3.57 3.32 9.54

Chk-All
RockYou +0.51 +0.28 +0.25
phpBB +0.25 +0.38 +0.11
Myspace -0.15 -0.02 +0.49

Chk-wBL
RockYou +0.32 +0.11 +0.20
phpBB +0.06 +0.19 +0.05
Myspace -0.26 -0.20 +0.46

Chk-AOp
RockYou 0.00 0.00 0.00
phpBB -0.11 +0.15 -0.04
Myspace -0.27 -0.14 +0.35

Fig. 8: The top table shows the success rate of an attack against
the exact checking scheme for the attacker-estimated distri-
bution (row) used against the challenge distribution (column).
The remaining tables show the difference between success rate
of an attacker against the tolerant scheme and the exact check-
ing scheme, for the indicated attacker-estimated and actual
challenge distribution pairs. All values are in percentages.

right diagonals reflect some of the results already shown for
the exact-knowledge attacker in Figure 5.)

The improvement the attacker obtains when one switches to
a tolerant checking system is never greater than 0.28%. More
interestingly, in some cases the difference is negative, which
means that the attacker did worse against the typo-tolerant
scheme. This may be counterintuitive, but here the estimates
the attacker makes about the distribution can often be wrong.
This can lead her to choose a set of guesses that maximizes
the total success probability according to her estimate but not
according to the challenge distribution. We give an example
for the curious reader in Appendix G.

In summary, our simulations here suggest that a carefully
designed typo-tolerant checker will result in little to no secu-
rity loss against realistic adversaries.

VII. CONCLUSION

We presented the first treatment of typo-tolerant password
authentication. We demonstrated, with large-scale, real-world
experiments, that password typos are a real and common
source of user errors in authentication systems. We found
that a few types of typo-corrections account for an over-
whelming number of password typos. We provided a formal
framework for exploring typo-tolerant password checkers, and
focused on a class of them called relaxed checkers that
are backwards-compatible with existing password hashing
schemes. We showed, via what we call the free corrections
theorem, that there exist relaxed checkers against which the
best attack performs no better than the best attack against an
exact checker. Unfortunately the construction requires exact
knowledge of the password distribution. We therefore gave
a number of practical typo-tolerant checkers inspired by it,
and analyzed their security empirically, showing that one can
easily obtain significant utility improvement with minimal or
no security degradation.

15

Security	Degradation

Corrected by (f) rf/cf (%)

swc-all 1.13
swc-first 5.56
rm-last 2.05
rm-first 0.35
n2s-last 0.21

Ctop5 9.30
swc-all swc-first rm-last rm-first n2s-last

0

1

2

3

4

5

6

Corrector f

%
of

fa
ilu

re
s

co
rr

ec
te

d
(r

f

/c
f

) Desktop
Mobile

10

0
10

1
10

2

0.2

0.4

0.6

0.8

1

Time delay (s)

Fr
ac

tio
n

of
us

er
s

w
/m

ul
tip

le
lo

gi
n

at
te

m
pt

s

Fig. 3: (Left) The fraction of login attempts correctable by Ctop5 in a 24-hour study at Dropbox. (Middle) Performance of
Ctop5 on mobile versus desktop. For each corrector in Ctop5 we plot the fraction of failures for each platform correctable by
the corrector. (Right) CDF of time delay (in seconds) between the first failed login due to a typo and first successful login.
Included are only users that had a failed login attempt and later a successful one.

iment design, and that the Dropbox numbers more accurately
reflect rates in operational environments.

While collecting this data, we recorded the user agent for
all password submissions, so we were able to analyze the
performance of typo correction on mobile platforms versus
desktop platforms. We found that the estimated correction
rate for mobile was slightly higher at 10.5%, compared to
9.3% for desktop (calculated here with the denominator being
the number of rejected password submissions for mobile and
desktop, respectively). We show, in the middle figure of
Figure 3, the estimated correction rates for each user agent
broken down by corrector function. We see that n2s-last is a
significantly more effective correction on mobile, which may
be because mobile keyboards require switching to an alternate
keyboard to reveal symbols. We also see that swc-all is a more
effective correction on desktop, most likely because it’s easier
to leave caps lock enabled on conventional keyboards.4 This
dichotomy suggests the potential merit of applying different
correction policies on the server based on the user agent. We
leave the further analysis of this for future work.

Utility of the top three corrections. We perform a second
study that restricts attention to just the overall top three
correctors Ctop3 = {swc-all, swc-first, rm-last} observed in
the previous study (and, in turn, the MTurk experiments).
For this experiment, the instrumentation applied all three
correctors to any password that failed to exactly match the
registered password. So, now cf is the number of failed login
attempts for every f 2 Ctop3. As before, we recorded data for
24 hours.

We additionally recorded the time duration for a login
attempt to succeed. That is the time lag between the first failed
submission and the first successful submission by each user in
this 24-hour period. (Because Dropbox uses session cookies
most users typically need to successfully login only once per
24-hour period.) This allowed us to quantify the time delay

4On Android devices, enabling caps lock requires pressing and holding the
shift button, and on iPhone devices one has to double press the shift button
to enable caps lock.

between failures and successes, a measure of how much utility
is lost due to usability issues such as typos.

As we would expect, the success rate of corrections closely
matched the results of the previous 24-hour experiment.
Specifically, typos correctable by Ctop3 accounted for 9% of
failed password submissions. This also attests the stability of
these percentages over time.

We show in right figure of Figure 3 a CDF of the delay in
logging in over all users who eventually succeeded at logging
in (within the 24-hour period). Note that some small fraction
of users did not log in for a very long time, suggesting they
gave up and came back hours later. Even so, almost 20%
of users that experienced a failed login would have been
logged in a minute earlier should typo-tolerant checking have
been enabled. Aggregated across all failed login attempts,
typo-tolerance here would have increased logged in time by
several person-months just for this 24-hour experiment. This
represents a significant impact on user experience and a clear
pain point for companies keen on making it easy for their
users to log in.

In aggregate, of all users who attempted to log into Dropbox
within the 24-hour measurement period, we discovered that
3% were turned away even though at least one of their
submitted passwords was correctable by one of the correctors
in Ctop3. This also represents a significant impact on user
experience, with users being prevented from using the service.

V. TYPO-TOLERANT CHECKING SCHEMES

In previous sections, we saw that typos account for a
large fraction of login failures and that a simple set of typo
corrector functions could significantly improve user experi-
ence. A natural follow-on question is whether we can achieve
typo-tolerance in password authentication systems without a
significant security loss. We address that question here.

We will show, by introducing what we call the “free
corrections theorem,” that for all natural settings there exist
typo-tolerant checking schemes that correct typos with no
security loss relative to exact checking for optimal attackers

8

Figure:		(Left)	Fraction	of	failed	logins	due	to	some	
easily	correctable	typos.	(Right)	Fraction	of	logins	
delayed	due	to	those	easily	correctable	typos.

Usability Security
Fraction	of	login	attempts	
results	in	successful login.

Success probability	of	an	
attacker	in	guessing	a	
randomly	sampled	
password	within	q tries.

Conclusion
Typo	correction	in	passwords	is	possible	with	
negligible	degradation	in	security.

Only entered
password

Try all typo
correctors

Fix typos except
to blacklisted PWs

Fix typos except
for heavy balls

