
void Client(int x, int y, int iv) {

int p = x * y;

if (x % 9 == 0) {

if (y & 1 == 1) {

int s = AES(iv);

int c = p ^ s;

SEND(iv, c);

}

}

}

Server-side Verification of Client Behavior in
Cryptographic Protocols

Andrew Chi, Robert Cochran, Marie Nesfield, Michael K. Reiter, Cynthia Sturton
University of North Carolina {achi,nesfield}@cs.unc.edu

http://silver.web.unc.edu Cloud Security Horizons Summit, March 2016

Goals

Implementation

Results
Approach

Exploits of client-server protocols often involve modifying clients
to behave in ways that untampered clients could not.

Current Practice
• Attempt to harden servers. Even with extensive review, widely

deployed servers have codebases too large to even guarantee
perfect input validation (generally considered an “easy” fix).

• Anomaly detection. Statistical IDS tools detect egregious client
misbehavior, but are vulnerable to mimicry attacks.

Our Innovation
We build a verifier that checks whether client behavior is
consistent with the exact client program; we therefore discover
client exploit attempts even prior to a vulnerability’s disclosure.

Adapted from
xkcd.com/1354

The verifier monitors each client message as it is delivered to the
server, and uses symbolic execution to solve for inputs that could
have driven the client software to send the observed sequence of
messages. To handle real-world cryptographic clients, two core
innovations are required:

1. Parallelization: Explore
multiple candidate execution
paths concurrently using thread-
level parallelism.

Execution tree explored in parallel by worker
threads W1 through W4.

2. Multipass: Cryptographic
functions on unknown (symbolic)
data are prohibitively costly.
Defer them until their inputs can
be deduced, by running multiple
passes of symbolic execution.

Pass one. AES(iv) is deferred because the verifier
cannot deduce iv = 0x1234 until reconciliation with
the observed message at SEND(iv, c).

Pass two. AES(iv) executes concretely. Terminates
when constraint set 𝜎. cons is logically equivalent
to its previous version nd.saved (i.e., fixed point).

Example client code

The verifier is built upon KLEE, a symbolic execution engine that
operates on LLVM bitcode. Our enhancements comprise:
1. “Client Verification” mode (previous work)

a. Special handling of SEND/RECV network events

b. Reconcile observed messages against constraints
2. Parallelization of KLEE

a. Multiple symbolic state “searchers”
b. Thread-safe symbolic memory management
c. Thread-safe constraint caching and SAT solving

3. Multipass symbolic execution
a. API for specifying prohibitive functions
b. “Skip” prohibitive function iff its input is symbolic

The verifier was evaluated on a system with 3.2GHz Intel Xeon
E5-2667v3 cores and 256 GB RAM. Network setup: passive tap.

Single-CPU verification of TLS
layer of a 3-min Gmail session
(21 TLS sessions, 3.8MB data)

Stress Test – Added complexity: draft TLS 1.3 padding

Notation: lag(n) = duration between msgn’s
arrival and time it is declared valid, given that
msgn verification cannot begin until msgn-1

completes. All 21 TLS sessions are summarized.
Box plot at horizontal-axis value t includes
𝑙𝑎𝑔 𝑖 : 𝑡 ≤ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖 < 𝑡 + 30s . ♢ = mean.

Detection of Two Classes of Client Exploits
• CVE-2014-0160: (Heartbleed) Client sends encrypted, invalid

length field resulting in sensitive memory disclosure.
• CVE-2015-0205: Client sends correctly formatted messages;

but state machine violation enables authentication bypass.

Real-World Performance Test – Gmail payload on TLS 1.2

The verification completes within the wall-clock interval for which the sessions are active.

TLS 1.3 supports encrypted
random padding, increasing
the verifier search space. Using
multiple threads enables the
verifier to overcome the added
complexity.

Up to 128 bytes of padding: 16-worker verifier overcomes added search complexity.

1st pass, execution 1st pass, reconciliation

2nd pass, execution 2nd pass, reconciliation

Multipass algorithm on a TLS client implementing an abstracted subset of AES-GCM.
Rectangular blocks are prohibitive functions; circles are variables. Shaded nodes are concrete values or
functions executed with concrete inputs. Unshaded nodes are symbolic values or skipped functions. The
symmetric key, k, is communicated by the server to the verifier.

Heartbleed. OpenSSL bug that affected half a million web servers in 2014. A modified
client sends a TLS Heartbeat containing an invalid (but encrypted) length field.

Single-CPU verifier rejects attack traffic in 6.9s and 2.4s, respectively, with no
vulnerability-specific configuration. Note: the most relevant metric for verifier speed is
accepting legitimate traffic quickly (above)—not rejecting attack traffic quickly.

http://silver.web.unc.edu/

