
A Software Approach to Defeating
Side Channels in Last-Level Caches
Ziqiao Zhou, Michael K. Reiter, Yinqian Zhang

University of North Carolina ziqiao@cs.unc.edu

http://silver.web.unc.edu Cloud Security Horizons Summit, March 2016

Goals Prime-Probe Defense

Flush-Reload Defense

Last Level

Cache

miss clean hit

flush wait reload

clean

hit

hit

hit

hit

filled

filled

filled

filled

hit

hit

hit

miss

prime wait probe
filled

filled

filled

filled

prime wait probe

flush wait reload

copy

Last-Level Cache-based side

channels exploit imperfect

hardware isolation to leak

information between different

security domains, of which two

fine-grained varieties are prime-

probe and flush-reload attacks:

Last Level Cache

L2L2

L1-D L1-I L1-I Li-D

Core 0 Core 1

Memory

 Approach: Copy-On-Access

Domain A

Domain B

copy

secret

signal

signal

secret

Copy-On-Access uses

on-demand copy for

other domain’s access

to disable active

memory sharing.

 100

 150

 200

 250

unshared

shared

C
P
U

c
y
l
e
s

 100

 150

 200

 250

unshared

shared

C
P
U

c
y
l
e
s

Similar reloading

times with

CacheBar-enable

Clear signal!

CacheBar-

disabled
 0

 10

 20

 30

 40

java-tomcat

python-apache+cgi

python-tornado

ruby-puma

ruby-passenger

ruby-unicorn

ruby-mongrel

ruby-thinT
h
r
o
u
g
h
p
u
t
(
r
e
q
/
s
)

w/o CacheBar w CacheBar

32
36 34 34 33

36

24

34 32
28 27

3234 34

 0

 150

 300

 450

 600

4 8 12 16 20 24 28 32 36 42

M
e
m
o
r
y

o
v
e
r
h
e
a
d
(
M
B
)

Number of containers

nonshared-busy

CacheBar-busy

CacheBar vs. Disable sharing

when 25% servers are active

Throughput for different language -

webserver pairs

Counter
container ID

Owner state
1 2 3 4

P
F

N

1 0 0 0 0 NULL unmapped

2 2 0 0 0 NULL exclusive

3 1 1 1 1 NULL shared

4 3 0 1 0 ID 1 accessed

Keep track of page state

transition using two

data fields: counter in

each namespace and

owner in each page

 Implementation

To reduce the memory pressure, a daemon will periodically (at a low

rate) merge not-recently-used copy, and reset the ownership of page.

 Security: reload times, unshared vs. shared memory

Cacheable Non-cacheable

Available budget (k):

 < # way of LLC

 Dynamically changed

 Independently chosen

 Modified page fault handler for CacheBar

 Performance Evaluation

Control # of cacheable memory

pages (k) per color and per

domain, to disable the ability

to prime whole cache set. On

access to NC page, LRU

strategy is used for cacheable

page replacement. In addition,

three properties (✓) are used to

guarantee the security.

 Approach: Cacheable Queue

 Implementation: a queue for each page color in each domain

 Security: Naïve Bayes Classifier

Integration

confusion

matrix

attacker’s classification
N O F S L M

v
ic

ti
m

's
 d

em
an

d NONE .96 .04 .00 .00 .00 .00

ONE .01 .80 .19 .01 .00 .00

FEW .00 .16 .50 .30 .04 .00

SOME .00 .00 .07 .54 .34 .04

LOTS .00 .00 .00 .03 .84 .13

MOST .00 .00 .00 .03 .56 .41

confusion

matrix

attacker’s classification

N O F S L M

v
ic

ti
m

's
 d

em
an

d NONE .34 .14 .23 .21 .06 .02

ONE .16 .31 .17 .23 .09 .04

FEW .13 .12 .34 .22 .13 .05

SOME .13 .10 .16 .38 .19 .05

LOTS .12 .08 .11 .19 .37 .12

MOST .14 .08 .16 .22 .18 .21

CacheBar-Disabled (68%) CacheBar-Enabled (33%)

NONE ={0} ONE ={1} FEW ={2-4} SOME ={5-8}

LOTS = {9-12} MOST = {13-16}
Demand ranges

(way of cache=16)

http://silver.web.unc.edu/

