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Last-Level Cache-based side 

channels exploit imperfect

hardware isolation to leak 

information between different 

security domains, of which two 

fine-grained varieties are prime-

probe and flush-reload attacks:
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 Approach: Copy-On-Access
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Copy-On-Access uses 

on-demand copy for 

other domain’s access 

to disable active

memory sharing.
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CacheBar vs. Disable sharing  

when 25% servers are active

Throughput for different language -

webserver pairs
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1 0 0 0 0 NULL unmapped

2 2 0 0 0 NULL exclusive

3 1 1 1 1 NULL shared

4 3 0 1 0 ID 1 accessed

Keep track of page state 

transition using two 

data fields: counter in 

each namespace and 

owner in each page

 Implementation

To reduce the memory pressure, a daemon will periodically (at a low 

rate ) merge not-recently-used copy, and reset the ownership of page.

 Security: reload times, unshared vs. shared memory 

Cacheable Non-cacheable

Available budget (k):

 < # way of LLC

 Dynamically changed

 Independently chosen

 Modified page fault  handler for CacheBar

 Performance Evaluation

Control # of cacheable memory 

pages (k) per color and per 

domain, to disable the ability 

to prime whole cache set.  On 

access to NC page, LRU 

strategy is used for cacheable 

page replacement. In addition, 

three properties (✓) are used to 

guarantee the security.

 Approach: Cacheable Queue

 Implementation: a queue for each page color in each domain

 Security: Naïve Bayes Classifier

Integration

confusion 

matrix

attacker’s classification
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d NONE .96 .04 .00 .00 .00 .00

ONE .01 .80 .19 .01 .00 .00

FEW .00 .16 .50 .30 .04 .00

SOME .00 .00 .07 .54 .34 .04

LOTS .00 .00 .00 .03 .84 .13

MOST .00 .00 .00 .03 .56 .41
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matrix

attacker’s classification
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d NONE .34 .14 .23 .21 .06 .02

ONE .16 .31 .17 .23 .09 .04

FEW .13 .12 .34 .22 .13 .05

SOME .13 .10 .16 .38 .19 .05

LOTS .12 .08 .11 .19 .37 .12

MOST .14 .08 .16 .22 .18 .21

CacheBar-Disabled (68%) CacheBar-Enabled (33%)

NONE ={0} ONE ={1} FEW ={2-4} SOME ={5-8}  

LOTS = {9-12}  MOST = {13-16}
Demand ranges 

(way of cache=16)
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