

Mitigating Side Channels Using Statistical Privacy Mechanisms

Qiuyu Xiao, Michael Reiter, Yinqian Zhang University of North Carolina qiuyu@cs.unc.edu

Goals

Mitigate side channels in mobile and cloud computing environments while maintaining platform utility

- Storage side channel: attacker infers sensitive information from metadata or management data (e.g., resource usage info from the *proc filesystem*)
 - Example: one process infers the web page visited by a browser process by measuring its data resident size values repeatedly

Invariant reestablishment

- Noising observations will break some applications
- Solution: Reestablish invariants on noised values, so they appear as unnoised values
- Invariant reestablishment does not erode the privacy achieved by the *d*-private mechanism
- Example invariants from procfs:

One-field Invariants	Multiple-field Invariants
totalVM ≥ 0	totalVM \geq sharedVM
utime[i] ≥ utime[i – 1]	hiwaterVM ≥ filePages
<pre>starttime[i] = starttime[i - 1]</pre>	execVM ≥ filePages + swapEnts

Implementation

Website Fingerprinting Attack via Storage Side Channel

• **Timing side channel**: attacker infers sensitive data (e.g., crypto keys) by timing events on the computer (e.g., cache accesses to data) using real-time clocks

Approach

First noise data using a *d-private mechanism*, and then *reestablish invariants* to maintain the utility of the data before it is output

• Example design for procfs:

d-privacy

As the attacker observes noised data, it must infer whether the original data is introduced by the sensitive action or an insensitive one
M: d-private mechanism, d*: distance metric
If underlying X and X' are close (d*(X, X') < r), and ε is small, then noised observation X̃ is similarly distributed

- Implemented prototype to address storage side channels in procfs on Linux
- Prototype is implemented in Ubuntu 14.04 with kernel version 3.11.
- *d*-private mechanism is implemented as a kernel routine
- Invariant reestablishment functionality is implemented in a user-space daemon

Results

Example security eval:

- Infer the web page
 (from a set of ten web pages) visited by the
 browser based on its
 data resident size
- Without protection, the attacking accuracy is 0.915

Utility evaluation:

 Relative error measured for the

 $P(M(X) = \tilde{X}) \le \exp(\epsilon \times d^*(X, X')) \times P(M(X') = \tilde{X})$

- As number of observations grows, noise must increase
- Principled design gives *provable* guarantees
- Applies to both storage and timing channels of many types

- data resident size when ϵ is set to 0.01
- The relative error is less than 10% most of the time
- Rank accuracy by the top command based
 on the resident size
 field when
 ϵ is set to
 0.01
- The utility of *top* is maintained

http://silver.web.unc.edu

Cloud Security Horizons Summit, March 2016